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Summary of Work Done Under Grant Sponsorship

The main purpose of this research has been to develop a rigorous theory and corre-

sponding computational algorithms for through-the-thickness analysis of composite plates.

This type of analysis" is needed in order to find the elastic stiffness constants for a plate and

to post-process the resulting plate solution in order to find approximate three-dimensional

displacement, strain, and stress distributions throughout the plate. This also requires the

development of finite deformation plate equations which are compatible with the through-

the-thickness anal_-ses.

After about one year's work, we settled on the variational-asymptotical method 1

(VAM) as a suitable framework in which to solve these types of problems. VAM was

applied to laminated plates with constant thickness in the work of Atllgan and Hodges 2.

The corresponding geometrically nonlinear global deformation analysis of plates was de-

veloped by Hodo_s, Atflgan, and Danielson 3. A different application of VAM, along with

numerical resuhs, was obtained by Hodges, Lee, and Attlgan 4. An expanded version of

this last paper s has been submitted for publication in the AIAA Journal. (Copies of these

papers have been delivered to Mr. Hinnant.) One last paper was just completed 6 and a

copy is included as an appendix to this report. Summaries of the progress in the various

categories we _ked on follow. Technical details are in the papers. _

Work on Finite Deformation of Plates

In Ref. 3, a set of kinematical and intrinsic equilibrium equations are derived for large

deflection and rotation but with small strain. This _rk showed that the drilling type

rotation is not an independent variable in plate theory. If it is to be included in plate

equations at aIl,. there must be a constraint enforced between it and its definition in terms

of other plate variables. Unless this constraint is enforced, the theory including the rotation

as a separate variable is not valid. The main contribution of this paper is a complete set

of geometrically exact strain-displacement relations for large deformation of plates.

Also, the relationship between the drilling rotation and the other kinematical variables

gives new _ in_ the drilling moment and its role in beam-plate connectivity. An

applied drilling moment at a point on a plate is not resisted at all by the plate. Such a

moment, in order to have any physical resistance from the plate, must be applied over a

finite area. Other than this, a point drilling moment can only be resisted by a plate if

the plate model is derived from couple-stress elasticity 7. b-hn-ther study on this problem

was shelved, because of the need to interpret the drilling rotational degrees of freedom in

certain plate and shell finite element formulations. There is an apparent conflict between

the theoretical result of a plate having zero stiffness in response to a point drilling moment

on one hand, and the finite element results found in the literature for the response of

plates to poim drilling moments. The papers in which these results appear are of several

researchers, some of whom are highly regarded by the international community and by

the principal investigator. A dialog has been initiated on this subject with some of these

people, but to date we have no resolution to this question.

p

pRECEDING PAGE BLANK i',_OTFILMED



Work on Modeling Laminated Plates

By modeling here we mean the calculation of elastic constants for a two-dimensional

model based on known material constantj for the three-dimensional body. This can only

be done approximately, of course, and asymptotical methods are natural. In Ref. 2, the

"first approximation 1 is exactly the same as classical laminated plate theory. The "sec-

ond approximation" takes transverse shear deformation into account and is asymptotically

correct only for plates with certain restrictions in their construction. To remove the re-

strictions one must _dll" certain interaction terms in the strain energy, but the means for

doing so for general laminated plates were not given in that paper. Indeed, the means for

doing this were unknown to us at that time.

The development in Refs. 4 and 5 includes transverse shear in the "first approxima-

tion" and is stopped there. Results from this theory were compared, for the cylindrical

bending case, with results from the exact solution of Pagano for both cross-ply s and shear-

coupled 9 laminated plates. The resulting theory, termed a "neo-classical" theory (NCPT),

is at least as good as classical plate theory (CPT) in every case; for most cases NCPT

is superior to CIr. For example, NCPT does a much better job on calculation of plate

(two-dimensional) displacement than CPT. Also, many three-dimensional quantities are

calculated much more accurately than could be achieved with CPT. Results for several

different types of plates may be found in Ref. 5.

As pointed out in Ref. 5, there is a need to develop higher approximations in order to

(1) improve the oveml performance of the theory for applications to thick plates and (2)

improve the accuracy of predicted transverse strains and stresses, especially in situations

when integration of the three-dimensional equilibrium equations cannot be accomplished,

such as in the geometrically nonlinear case.

Work on a Higher Approximation for NCPT

In order to improve the asymptotical accuracy of NCPT one needs to introduce "de-

grees of freedom I of the normal line element which will eliminate or "kill" interaction

terms of the type identified in Ref. 2. In our work during the last reporting period we

applied Sutyrin's eigen-principle (described in the last report) to develop a refined theory

for laminated plates of constant thickness. This theory includes CPT as a special case

and even in its most elementary extension should surpass NCPT in predictive capability.

Furthermore, because it is based on a variable number of "degrees of freedom" for the

normal line element, it should allow users of future finite elements based on this theory to

decide which of these degrees of freedom they want in their models. In principle, one can

approach the accuracy of three-dimensional elasticity to any degree desired. The theory is

completed as far as the derivation of the stiffness model based on eigenfunctions associated

with a certain Sturm-Liouville operator. A computer code has been written and validated

for the calculation of these eigenftmctions. Another code is presently under development

which will use these eigenfunctions to build the stiffness model. For the details of the

stiffness model, see Ref. 6.



Depending on what funding we can find, in the future we intend to generateresults
from this new theory for the cylindrical bending problem. This will allow us to inexpen-
sively evaluatethe number and typesof normal line elementdegreesof freedomrequired for
accurate solutions. The last step would then be to build a prototype plate finite element.

We believe that this element would be far superior to any extant plate finite elements.

We would want to work with someone who already has experience in two-dimensional fi-

nite elements. The strength of our element would be in the theoretical foundation, not

in the finite element technology itself. Dr. Sutyrin also has devised a means by which a

discretized model based on three-dimensional finite elements can be reduced directly to

plate elements. While this should be equivalent to our present semi-analytical approach,

it may prove to be more convenient in certain contexts.
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A Variable-Order Laminated Plate Theory

Based on the Variational-Asymptotical Method

Bok W. Lee; Vladislav G. Sutyrin;" and Dewey H. Hodgest
Georgia Institute of Technolc_; Atlanta, Georgia

Abstract

The w4riatkmaLasymptotic_ method is a mathemat-

ical technique by which the three-dimen_nal analysis of

laminated #ate deformation can be split into a linear, one-

_the-thicknem analysis and a nonlin-

ear, _ plate analylds. The dastic constants

used in the plate analysis are obtained from the through-

the-thicktmm analysis, tdong with approximate, dosed-form

t_al distributiom of displacement, grain, and

stress. In this paper, a theory based on this technique

is developed which is capable of approximating three-

dimensional ehsticity to any accuracy dedmxl. This theory

is not developcx] using any of the usual approaches of lam-

inated phxe theory. That is, it is not based on any power
series _ through the thickness, nor is it based on

introduction of a set of variables which describe displace-

merit in separate layers of laminated plates. Rather, the

asymptock_ method allows for the approximation of the

throug_ beha_ in terms of the eigenfunc-

tions of a _ Sturm-Lio_ille problem associated with

the thickness coordinate. These eigenfimctions contain all

the necessakw information about the nonhomogeneities along

the thickness coordinate of the plate and thus possess the ap-

propriaxe discontinuities in the derivatives of displacement.

The theory, is presented in this paper along with numerical

results for the eigenfunctions of various laminated plates.

Introduction

• For aertmpace structures, laminated composite materi-

als pro_£e excellent opportunities for structural simplicity

as well as dastic couplings for potential optimization of de-

sign criter_ .Although plates made of str._h materials have

beeu _ for some time in a ratiety of engineering sppli-

cations, simple and efficient methods for analyzing plates

with anh-,__-ropy and nonhomogen_ty are still needed. This

is partly" due to rapid changes taking place in manufactur-

ing te_L_." for composite materials and partly to ever-

increasing demands for accuracy and efficiency. Much of

what is d_me is based on classical plate theory (CPT) which,

"Gr_w.e Research Assistant, Sd_ool of Aercepace Engi-

neering. F_-D. Student, Program of Engineering Science and
Mechank_

""_,_:s_'._gScholar, School of Aerospace Engineering.
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although adequate for many engineering applications, has

known limitations due to the Kirchhoff hypothesis.

Background

Many attempts have been made to improve classical

theory by taking intoaccount non-classicalbehavior such as
shear deformation and transverse normal stresse_

Prom the time laminated fiber-reinforced composites were
first introduced, numerons works have been published, the

objectives of which include the improvement of CPT for lam-

inated plate applications. This subject is discussed at length

in review papersJ a There are two main classes of methods

for improving plate theory found in the literature: (1) Pou_r

Serie_ Methods: expansion of the displacement field variables

into higher-order power series in the thickness coordinate;

and (2) LalTerw_ Va_tabIeJ Methods:. incorporation of sep-

arate sets of displacement variables for each layer. Both of

these methods have known shortcomings. For example, no

power seri_ expansion can possibly render accurate results

for quantities which may possess discontinuities, such as cer-

tain components of strain and stressin laminated plates.

The layerwise variables methods rely on a significant in-

crease in the ntmlber of unknowns, a number which depends

cm the number of layers in the plate. A third method has

received some attention in recent years, which involves an

assumed displacement field with discontinuities allowed in
through-the-thickness derivativeS. ,4,s There is no question

that this method yields excellent results in some cases, but it

lacks a systemaxic basis for choceing the displacement func-

tions, and it does not yield an asymptotically correct result

Ref. 6 undertook a quite different approach. It does not

in',x>lve a power-series expansion through the plate thick-

ness, nor does it involve layerwise unknowns. Rather, the

three-dimensional energy of a laminated plate _s approx-

imated following Berdichevsky's variational-asymptotical
methodology. 7 Normally asymptotical methods are employed

for analytical developments, but here such a method was

used in a sort of semi-analytical approach. Namely, the

theory leads to a Reissuer-like plate theory, along with a

set of elastic constants; it also provides a set of influence

functions from which approximate three-dimensional dis-
placement, strain, and stress fields can be determined once

the plate equations are solved. The plate equations can be

solved by any method desired, such as a two-dimensional
finite dement method. The analysis was restricted to lami-

nated plates for which each lamina exhibits rnonoclinic ma-

t_ial symmetry about its middle surface. Their first ap-

proximation is asymptotically correct for this case and coin-

cides with classical laminated plate theory. Ho_ever, their

_-:,-_e_t_,_d at the 34th Structures, Structural Dynamics and ._t_La_ Conference, La Jolla, California, April 19 - 22. 1993



second apyrox_v_ion is asymptotically correct only when

each element of the reduced stiffness matrix Q (see Jones s)

is constant through the thickness of the entire plate. Al-

though the theory_ is not asymptotically correct otherwise, it

was intended f-r application to laminated comlx_ite plates.

The limitatice of their work stems from a term in the strain

energy which was neglected. A suitable method to make
this term vanish rigorously is needed in order to make the

theory .asy-mptegk_lly correct, but was not given.

A _milar, but somewhat improved, approach was un-

dertake_a by Re_ 9 and 10, in which the estimation pro-

cedure of R_ 6 was slightly modified to include transverse

shear terms in the first approximation. Plates with cross-

ply stacking sequences under cylindrical bending were taken

as exxmt_e problems in Ref. 9. In & later extension of this

work_ ° plates with arbitrary stacking sequences undergoing

cylindrical belling were taken as example problen_ The

material canf_urations of these latter plates are not as sim-

ple as tlmee of bidirectional plates, because of the influence

of the coupling of transverse shear term_ The distributions
of three-dimems_nal displacement, strain, and stress were

investigated for both cases by comparing the corresponding

three.di_ exact elasticity solution. IL12 "fine theory
of Re_ § and I0, termed the %eo-classical _ plate theory

(N CPT), wffis shown to be more accurate than CPT for thick,
laminated plzteg also, it was shown to yield results which

are so_ better than those of the theory of Ref. 6.

Still, there were results reported for which the corre-

lation of NcFr with the exact solution is not good. For

example, _aen shear coupling exists, NCPT show_ signif-

icantly _ correlation with the exact solution than for

the b'_ cases. It is necessary, then, to extend the

validity, of the theory to a higher approximation. Although

it is no_ discussed in Refs. 9 and 10, such an extension re-

quires tb_ certain interaction terms vanish These terms

are analc_govs to the one neglected in Re£ 6. For this reason

a method for generalization of the theory of Refs. 9 and 10

has been de_4oped, and that is the subject of the present

paper.

Present Approach

The essence of the new approach, which guarantees dis-

appeara._c_ of the interaction terms discussed above, is the

introduc*Jrm of new "degrees of freedom _ into the three.

dimens__.al displacement field. We are not using the term

_'degrees _ freedom" in its usual sense. Here we mean plate

(i.e., t_r._.2mensional) displacement variables which are as-
sociated w_kh a particular deformation mode of the normal

line elen-_t through the thickness. The shape functions

of these r_w degrees of freedom are dmsen as the eigen-

functior_ _ociated with a certain Sturm-Liouville problem

formulated _" Sutyrin. 13 By choosing the associated warp-

ing _t to be orthogonal to the shape functions for

each of _ new degrees of freedom, the displacement field is

uniquely defined. The choice of shape functions from these

eigenfunctions guarantees that any additional warping in-

duced by the new degrees of freedom isof a higher order rel-

ativeto the new degrees of freedom themselves. The order of

these new degrees of freedom relative to the strain depends

on the loading and the material constants. After obtaining

the eigenvectors by using a one-dimensional finite dement

method, the plate elastic constants can be obtained through

the variational-asymptotical method. Utilizing global defor-

mation equations along with this resulting plate constitutive

law, we will complete the formulation of the theory.

In this paper we first provide the details for the kine-

matics of plate deformation in terms of classical plate dis-

phcement variables and the new degrees of freedom The

strain field needed to develop a geometrically nonlinear plate

theory is written in terms of these displacement variables.

The small parameters are identified as e, the maximum

strain in the plate, and _, where h is the plate thick-
ness and t is the characteristic length over which the de-

formation varies in the deformed plate. The variational-

asymptotical method is then used, along with a Ritz-type

appm0dmation of three-dimensional displacement variables
in the tlLrough-the.thickness coordinate, to approximate the

_nsional strain energy of the plate with a function

of two-dimensional quantities only. The above-mentioned

Sturm-Liouville problem is identified, the eigenfunctions of
which guarantee the warping to be of higher order than

any retained degree of freedom if they are chosen as the

shape functions for the retained degrees of freedom. The

_onal strain energy function is then given as a

function of material constants and eigenfunctions.

We are able to calculate the exact solution for the

Sturm_Liouvilh problem only for one- and two-layer plates.

Thus, it was necessary to develop an approxima_ method

of solution so that the plate theory could be finalized. We

present a finite element analysis in one dimension (through

the thickness) which we use to solve the Sturm-Liouville

prohlem based on the shape functions of _ 14. Eigenval-

ues and eigenfunctions for various laminated plates obtained

by a one.dimensional finite element method are presented

and, when possible, compared with the exact solution. Ap-

plication of the theory will be addressed in a later paper.

Theoretical Development

The objective is to derive a strain energy function of a

plate in terms of two-dimensional quantities only. It can he

done only if some smallparameters are present. We suppose

that the parameters mentioned above, e and -_, are small.

Three-Dimensional Formulation

To begin we will formulate a three.dimensional devel-

opment which shall he considered the exact solution to the

plate problem.

Um_orww.d State o[ p/at_ A typical point in the unde-

formed plate can he located by introducing a Cartesian coor-

dinate system xi in such a way that x_: {xl, x2} = x denotes



lengths __'c.g orthogonal straight lines in the mid-surface of

the undef:v'med plate, and zz --- y _- h_ is the distance in

the norm_ direction, where -½ _< ( < ]. Throughout the

analysis, G,_ek indices assume valu_ 1 or 2; Latin indices

assume ,_ues 1, 2, and 3; and repeated indices are summed

over thek ranges.

The _patial position vector i'(zl,z_,y) to an arbitrao"

point in the tmdeformed plate can be written as

_Cx,_) = r(=) + _b(=) (t)

where the notation ( ),,_ denotes the partial derivative with

respect to =_.

In order to eliminate the arbitrary rotation of vectors

Bo around normal B we impose the following constraint

B1 • Ra = B2- R.I (8)

where r(x) is the spatial position vector of point, on the

mid-surf_L-z of a plate and b(x) is the unit normal vector.

We will al_ need notation for unit ,_'_ors b_ E _ which,
together _ b, form an orthonormal triad.

Sincz the variable y (and _) is chosen specifically so that

the spati_ position vector r to a point on the reference mid-

surface is the a'_e.rage position of points along the norma]

line at a _ value of xl and z-_, then

r(_)=(_(z.<)) (2)

where the zz>ta6on

r]
(.) -= .dy = I .<

hJ__ j_:t

is used tL"ougimut the paper.

(3)

Deform.e£ State p[ Plate Without any. restrictions the

tion _-t_t- l_za, z2, y) to ,m arbitrary, point in the deformed

plate can be represented by

l_(z,y) = R(x) + vB(z) + t_(z,(:)B.(x) (4)

where R(:) is the position vector of points on the deformed

is the re_retx_ orthonormal triad with vector B being or-

thogonal to tl_ deformed referem:_ mirfaee, and v,_(x,_) are

com_ of the general warping d_flacement of an arbi-

trary poizrt in the deformed normal line, consisting of both

in- and _-of-plane components so that all possible defor-
mations _e considered.

The =-_'ping v_ could not he defined uniquely as a func-

tion of ( with an arbitrary choice of R(z) unless they are

subject tc the constraints

(_.(_, <))= 0 (s;

A schematic of the plate deformation is shown in Fig. 1.

\

\
Fig. 1: Schematic of plate deformation

(u is the displacement of the reference surface)

Thus, Eq. (4) provides a convenient way to represent

the arbitrary function l_(z, y). The orientation of the triad

B,, is now specified uniquely. ""

Strain F/e/d As shown in ReL 6, under the condition of

small local rotation, the Jaumann strain component, can be

arranged in a 3 x 3 symmetric matrix r*, given by

r- = ½(x+xr)-1
(9)

Xij = Bi.

where I is the 3 x 3 identity matrix.

which m that

The cvthogonality of vector B to the reference surface

means

R,_-B = 0 (7)

Substituting Eq. (4) into the Jaumann strain, Eq. (9),

one can express the strain field as a 6 x 1 column matrix

r = [F_t 2F_2 r_ 21_i3 2F_ rh] r so that

r = lrh v'+ r_7+ r_v, (lo)



where (-" _ _ and matrices F_ , _ and Ft are

[ 0i]:o:, ,,[o ,ol
0

1

0 r,= [r_ r21

[i0i]0 00 i00000 1

0 r2= 0

0 0

0 0

(11)

(,,}7 = h va = (12)
I[/,2

Here we w_] introduce the tin>dimensional strainnmasur_

for inpla_ stretchingand shear

e = R.a - B2 + R a - Bx (13)

Ra-][_- 1

and the ru_limensional strain measures for bending and
twist

K = B.1 -B2 +B_-B1 (14)

Ba-B_

The small par_neter g can be now spec/_ed as

= max 1 7 | (15)

A fe_ mmlinear terms in the strain field, which couple v

and 7, ha_ been neglected inEq. (10)because the physically

linearph_ theory isconsidez_d. The form of the strainfield

isof gre_ importance hecause itisnow linearin 7, v',and

_],:r•

Th_ is the only point where g as a small parameter is
taken izgo account.

Strain Er.er_ o[ P/ate The grain energy density per unit

area for a pl_e can be _._itten as

v = _(: D r)

where D is the 6 x 6 symmetric material matrix in the 131
basis.

The _eusional Janmann stress Z, which is con-

jugate t_ the Jauraaan stra_ r is

Z= Dr

Basic Three-Dimensional Problem

The basic three-dimensional problem can now be rep-

resented as the following minimization problem

fu(7(=),e(z,Q,v=(_,Q) hd_xdx2+

+terms with external forces --_ rain
08)

where the minimum should be found with respect to three

arbitraryfunctions R(=), through which 7(z) iscalculated,

andtothreefunctionsv.(z,¢)whicharesubjecttothecon_
m_intsofZq.(s).

Note that the orthonormal triad B,_ is not an inde-

pendent variable, since it is a subject to the constraints in

EqtL (7) and (8). It is completely determined by the function

R(x).

Dimensional Reduction

Solittin¢ of th_ problem Now the functionsJ spaoe of all the

admitted functions lb_(z,_/) is split into sublayers with a

choice of the x-dependent functions R(=). In each layer

the functions t_(x, _) are arbitrary under the constraint in

_. (s).

We can sol_ this problem in two steps. Firstwe are

going to find functions vn(z, _) for any p_ choice

of functions R(z). As a result, we will have th(s,_) as a

functional of R(x) and _, and the functional, Eq. (18), will

become dependent only on R(z). That functionalwillgive

us a two-dimenb-lcmM plate theory. The msxazl step is to

solve that theory.

Since the energy-density U depends not only on func-

tions v,,(z, _) but also on their derivatives with respect to z,

then the result of the first step will be very complicated (it

will contain a non-local dependence on R(z) in the general

case) and cannot be obtained in an appropriate form unless

we take advantage of some small parameters.

Small Parameters Let us consider the situation where pa-

rameters h, g and E are present. Since no coefficient matrix

ofF, F,q. (11), depe_ls on these parameters, it is clear that

the first term of the expression for strain, Eq. (10), has or-

der lk_, the second term has order E, and the third one has

order 11_. The third term has order _ times that of the
(16) first. We should neglect this as a higher order term in the

first approximation if we are going to expand the solution

with respect to the small parameter _. In the future, this

important circumstance allows us to avoid the presence of

derivatives of unknown functions v,(z,_) with respect to z

in the problem for any approximation and, hence, to solve
it in an appropriate form.

(17) Since our main problem has become linear with respect

to the unknown functions v,_ (x, _) and the two-dimensional

grain measure 7, the smallness of parameter e does not



needtobeco:_eredanymore.Thisfact has already taken

into accotmt (see above under Strain Field). We will expand

the warping ,._(z,_) as a series with respect to the small

parameter _ o_tv. In the absence of other small parameters,

expansion in ? i_ the same as expansion in h. That is why

we can consid_ h to be the small parameter in spite of its
dimension.

Discretization

The p_ may be solved numerically by discretizing

with respect to the thickness variable _. Now the unknown

functions _(z,_:} are represented as the product of a matrix

of shape _ S(_) and a column mtrix of nodal values

of v(x, _), _ we will denote V

.(.. ¢) = s(0w(.) (19)

Substituting the diseretized unknown function in

Eq. 09) moothe e_ergy deity, F.q.06), w_e taldnginto
account the strain, Eq. (10), one obtains

2u = (_)2VT EV + (_ ) 2 v T [Dh,'y+ Da, V,] + (2O)

+(I) (?TD.7 + 2 V.TDffi,7 + V=TDffi.V_)

in which the f_Bowing definitions are introduced

(21)

Classical Considerations

Accordin_ t_ the variational-asymptotical procedure, in

order to get the next approximation, one should retain only

the leading energy term with respect to the small parameter

that contaim the unknown functions and the leading inter-
section term be_-een the unknown function and the rest of

the functional (for more details see Ref. 7).

We are ie_ _ith the following expression

This function should be minimized with respect to _riable

_' trader the constraint, Eq. (5), which is transformed to the

following condition after diseretization

VTH_a = 0 H _= (STS) (23)

where _Gt is matrix with three columns, each corresponding

to one of the constraints of Eel. (5). The set of columns _a

are determined by the kernel (nul/-space) of matrix E (for

rr_re details see Ref. 7). This mea_s

E_¢, = 0 (u)

Let us suppose that the set of columns _t is normalized in

such a way that

• _H_d = X (25)

The Euler equation for the problem posed by Eqs. (22)

a_l (23) is

p is the column matrix of Lagrange multipliers for the

co_tramt in Eq. (23). By pre_multiplying Eq. (26) by _Td

o_e can prove that

= V_D_,7 (27)

Now the equation for V, Eq. (26), is rewritten as

( I _ Ev = -( I -- H _ct_t)D_'Y (28)
\"/

Since E has a kernel, E -_ does not exist. However, the

pseudo-inverse of E, E_, satisfied the following relations

E+dE = I - _dk_TH (29)

E+ EE + = E +

can be found (seethe Appendix) and the solutionof Eq. (28)

can be represented as

V = -hE+Dh_7 (30)

Substituting the solution, Eq. (30), into the discretized

strain energy density, Eq. (20), and keeping only terms with

the lowest order, which are equal to h ° _ 1 one obtains

2U = "TTA7 (31)

with

.,4-_D. - [Dh,]T_.a[Dh,] (32)

The third property,F-/l.(29),istaken into account here.



This is the identical to the classical result for the strain

energy of laminated plates.

New Degrees of Freedom

In order to make our plate functional more flexible with

respect to the variable x, let us introduce the new unknown

plate fimctkms such that

where matrix Au is

ro o o o ... o

|0 0 0 0 --- 0

|0 0 0 0 --- 0
A_= [0 0 0 ki "'" 0

/ i : : : "'. :

t000 0 .--

(40)

v(_) = %q(=) + w(=) (_)

where q is • column matrix of several new mflmown func-

tions, _[_ is • matrix, each column of Which represents •

(-shape form associated with one of the new unknown func-

tiom q(=), which willbe named "new degrees of freedom,"

and W isthe new warping to be found.

]Are will suppose that matrix g_ is normalized in such

a way that

,_[H% = I (34)

The folkming constraint for W will make the splitting,

Eq. (33),
WTH% = 0 (35)

The tlxter of functions q(z) with respect to h may be

arbitrary. _ it will be supposed to be equal to h ° = 1.

As a (-ehape form of new degrees of freedom let us take

eigenvecto_ of matrix E which correspond to the several

lowest ram-zero eigenvalues. Such • matrix _ will satisfy
the following equation

E% = n_, ^, (36)

where Aq is_ diagonal matrix of eigem_ues

]A2 "'" 0

Aq = : "'. .:

0 .*- A 4

(37)

The cvvstraint of Eq. (23), which still might be satisfied

by IV, can be combined with the constraint of Eq. (35) after

introducing the matrix _ = [_dq_ ] in such a way that

WT Hff2,, = 0 (38)

_b', Eq. (36) can be rewritten as

E_ = H_ A_ (39)

Calculation of Strain Energy

Let us assume that _ have the correct expansion of V

throughorderh2

V= Vo + hVx + hsV_ (41)

whereVo denotesthefirsttermofEq. (33)

v0=%q (42)

The _ector V0 satisfies the equation

(43)

and vectors V1 and V_ have to satisfy the constraint found

in Eq. (aS).

If we have an as_aptotically correct _n for

Eq. (41), we can calculate an asymptotically correct energy

for order h ° -- 1

1 2

(44)
+ 0){VIEV_ + 2 VIEV0+

+ 2 VT[D_-r+D_,Vo,,,] + 2 v_T=D=hV0+

+TT D..7 + 2 Vor.D.,7 + Vor=Dff Vo,=}

The underlined terms are equal to zero here b_ause of

Eq. (43) for Vo and the constraint of Eq. (38) for V1 and Va.

This means we do not need to know the second approxims-

tion for V (i.e., V2) in order to calculate the energy for order
h0.

We shall minimize the functional

VITEV1 + 2 V1T [Dh.7 + (Oa, - D'-a)Vo,,] (45)

in order to find V1.

The notation D_h means

D_"h = [(Da,,) r (D_,,) r] (46)

which comes from 2 V1T=D= h V0 in the fourth line of Eq. (44)

after integration by parts with respect to z, and x2.



The Eu]er equation for the f:=,_ional of Eq. (45) is

EV1 + Dhg'/ + (Dh, -- D'_,.)%_._ = H_P,, I_ (47)

where p_ is the Lagrange multiplier which enforces the con-

straint in Eq. (38).

Applying a procedure similax to the one used for the

classical case we can calculate the Lagrange multiplier/_

/_ = _1%r [Du,7 + (D_. -/T.h)Vo.,] (48)

and represent the solution of Eq. (4 o by

v, = E: + - (49)

where the matrix E_u can be found with the following prop-

erties
EE_ = I - H_ _I_r

E+ E = I - _ "I_rH (50)

E+ EE= =

See the Appendix for an exp -lanaxion of how to calculate

the matrix E_.

Substituting this expression in_ the energy, Eq. (44),

one obtains

2U= VorEVo+ 2 *_r [Du,7 + Dh, Vo..]+

+ + 2 +
(51)

where the following notations axe introduced

Ae, _- Dee - [D_,]r£= IDa.]

p,, a__D,, - [Dn. - IT.,.]TE= [Dn,] (52)

P,, _ D., - [Da. -/T_.]rE= [D,, - D;a]

Finally, after substituting the expression for V0,

Eq. (42), the strain energy can be written as

2U= 1;_q Aqe .4_ .4,. _q
q., A,e .4,, A,. q,,

where

(s4)

Eq. (53) represents the strain energy of a laminated plate

undergoing deformation which is constrained only in the

sense that the strain is small Displacement and rotation

of the normal line element appear nonlinearly in the expres-

sions for 7- On the other hand, tLe new degrees of freedom

give rise to simple linear Euler equations. Since the dis-

placement field is now completely specified in terms of 7, q,

and q,., it becomes a _nple matter to recover strain and
stressthroughout the plate by use of Eqs. (I0) and (17).

The classicalplate energy can be obtained from Eq. (53)

afterithas been minimized with respect to variablesq with

partial derivatives q.., being equal to zero.

Numerical Results

Exact solutions for the Sturm-Liouville problem can be

obtained with symbolic manipulation software, but we were

only able to carry, this out for one- and two-layer plates.

Thus, we turned to a finite element solution. In Ref. 15
results for Sturm-Lio_-flle problems with discontinuous co-

efficients were obtained which agree quite well with the ex-

act solution. Our finite element method is similar except

that the orthogonal Jacobi-polynomial-based shape func-

tions presented in Ref_ 14 are used. This means that our
finite elements have interior degrees of freedom which can

be added without generation a new element geometry. This

mesh through the thickness can be as fine as we wish, but

we must at least ha_e element breaks where discontinuities

exist. The highest derivatives invoved in the problem are

first derivatives with respect to _, and thus C O continuous

shape functions can be used. See Ref. 14 for details.

In this section we present some numerical results for the

solutions of the Stm-m-Liouville problem, compared when

possible with the _ solution. We start with an error

analysis of the eigenvalues for the two-layer case, and we
conclude with the eigenfunctions of one-, two-, and four-

layer plates. The four-laver results include both a symmetric

plate and a non-symmetric cross-ply plate.

For the purpose of discussion only, we align our coordi-

nate axes with zl along the length ("longitudinal inplane')

and x2 along the _:lth ("lateral inplane'); these are not

necessarily aligned with any material axes. For our exam-

ples, we choose a fiber reinforced composite material which

has the following material properties

EL = 2.5 x lO_psi E,r = lOepsi

CLT = 0.5 X 108psi CTT = 0.2 x 10epsi

lILT = _ = 0.25

where signifies the _on parallel to the fibers and T the

transverse direction. These properties, along with a ply an-

gle, allow the calculaxion of the matrix D. Note, however,

that in the example problems and indeed in all laminated

plates, certain terms in D will vanish. Our theory does

not require any special terms in D to be zero. Because

of the vanishing terms in the example problems, there is

mo coupling bet_ma out-of-plane and inplane displacement

components. Thus, certain modes will be entirely inplane



andothersentirelyout-of-plane.A_, since D_s is constant

through the thickness for stmh plates, the thickness mode

with the lo_est eigenvalue for all the examples will be a sine

ftmction.

As examples we consider the f<dlowing four lay-ups:

[15o1 -on_-_y_

[-15¢/15"-1 "x_r4ayer _

[30* / - 30"1,_,, "_mr-layer _

[0°/900/0"/90 *] "crow-ply"

where the words in quotation marks indicate the terms we

use to designate the plate under _n-

Eigenvalues for Two-Layer Plate

All of the plates ha_ three _e_ eigenvalues. These

correspond with the classical "degrees of freedom" of the
normal line element, the a,_rage displacement components

of that line element. The e_en,-atues appear in the above

equations as well, and the size of these eigenvalues may have
a bearing on whether the assodaxat degree of freedom is

an important one. Our present understanding is that the

smallest eigenvalues are the ones of_, but this must be

confirmed by application of the theory with different choices

for the degrees of freedom_ Here _e will present a few of the

smallest non-zero eigenwalues for the two-layer plate and the

analysis of the error, since the exact solution is available for
this case.

In Table 1 the first four nonze_ eigenvalues are shown

for the two-layer plate, both from the exact solution and

from our finiteelement app_ with four dements

(M=4). The order of the shape rum=titres is varied by chang-

ing J, the number of Jacobi polymlnials used to construct

the higher-order shape flmctions. The crudest dement has

3=0, resulting in linear shape _ Results axe shown

for J=l (quadratic shape functions) and 2=2 (cubic shape

functions). It is seen that all of the finite element results are

very close to the exact solution. Furthemore, the higher-

order shape functions greatly" improve the accuracy.

Exacl
J=0 J:l J=2

2.04599617 9-15317042 _04710246 2.04600108

4.29843523
8.87418655
10.57173730

4.542708S3
10.84944490

11.1 2555748

4.30275294 4.29845836
&93773416 $.87567158

i10._¢TT15155 10.57176142

Table 1: EigenwMues for 2-la_er plate

A more precise analysis of the _ax_r for the lowest

nonzero eigenvalue is presented in Figs- 2 and 3. In Fig. 2

the relative error versus the size of the eigenvalue problem

is essentially a straight line on a log-log _ if J, the num-

ber of Jacobi polynomials in each element, is held constant.

This means that the size of the matrix increases as the num-

ber of elements through the thickness is increased. In Fig. 3

the relative error versus the size of the eigenvalue problem is

shown for the case when the mesh is held constant; here the

size of the matrix increases as the order of element shape

functions is increased. We will present our results below for

the eigenfunctions based on elements with cubic shape func-
tions. To analyze plates with a large number of layers, the

number of dements must be increased. If only the higher-

order functionswere used, such analyses could become ex-

pensive. However, as _en in these plots,an increase in the

number of dements, which would be required because of

discontinuitiesin the propertiesbetween layers,would bring

the errordown without the need of higher-order shape func-

tion&
IF._

IE-I

IE-_

1E-3

rE4

1F__9

1

1E-I11
IE-12|

!

_J=0

........ | •

IO I00 100o
Size of Matrix for EigeavalueProblem

Fig. 2: Relative error for A1 of P-layer

plate wxsus size of matrix E for constant J

_.¢4-0 •

IE-1

IE-2

IE-3

1E-5 -

1F_,45-

IE-7-

1E-g-

IE-9-

1E-10

.=2\,.\
' !M=4

M=8'

M=i6

10 100 1000

Size c_ Matrix for Eigenvalue Problem

Fig. 3: Relative error for At of 2-layer

plate versus size of matrix E for constant M

Eigenfunctions for One-Layer Plate

Eigenfunctions for the smallest four nonzero eigenval-

ues of the one-layer plate are presented in Figs. 4a - 4d.
The finite element results, shown as solid lines, were ob-

tained using 2 elements with cubic shape functions; and the

exact solution, shown as dashed lines, is indistinguishable



from the finite element results in the plots. Fig. 4a shows

the eigenfunction for a transverse shear mode dominated by

the lateral inplsaae displacement, while Fig. 4b shows the

corresponding one dominated by the longitudinal inplane

displacement. Note in Fig. 4a the two displ_ment compo-
nents are of opposite sign while in Fig. 4b they are of the

same sign. Fig. 4c shows a higher mode of the same type

as shown in Fig.4a. The fourth nonzero eigenvaluehas an

eigenfunction with only out-of-planedisplacement. We note

the smooth character of these functions,which are closeto

sines and cosines. Plate theoriesbased on expansion of the

displacement in power seriesor trigonometricshould provide

excellentpredictivecapabilityforhomogeneous platessuch
as thisone.

Eigenfunctions for Two-Layer Phte

Eigenfunctious for the smallest four nonzero e_genvalues
of the two-layer plate are presented in Figs. 5a - 5<1, along

with the corresponding eig_nwlues. The finite element re-

sults were obtained using 4 elements with cubic shape func-

tions, and the exact solution is again indistinguishable from

the finite element results in the plots. Fig. 5a shows the

eigenfunction for a transverse shear mode dominated by the

lateral inplane displacement. Fig. 5b shows the correspond-

ing mode having more longitudinal inplane displacement,

but not so strongly dominated by it. Fig. 5c shows a higher

mode of the same type as shown in Fig. 5& The fourth

nonzero eigenv_ue again has an eigenfunction with only out-

of-plane displacement, as shown in Fig. 5d.

Although the displacement functions shown in Figs..5c
and 5d both appear to be smooth, the displacement has a

discontinuous slope in both Figs. Sa and 5b, in sharp con-
trastto resultsfor the one-layer plate.Power seriesapprox-

imations through the entirethicknessof the plate_ not

be able to capture thisbehavior,but the above theory shows

that the warping induced by thistype of displacement is a

higher-order effect.Thus, a plate theory with thesedegrees

of freedom should be a noticeableimprovement overclassical

theory. Furthermore, such a theory should be an improve-

ment over the theory of Ref_ 9 and 10.

Eigenfunctions for Four-L_er Plate

Eigenftmctions for the smallest four nonzero eigenv_l-

ues of the four-layer plate are presented in Figs. 6a - 6d.

These results were obtained using 8 elements with cubic

shape functions. Figs. 6a and 6b show the eigenfunctions

for coupled transverse shear modes, the former having snore

lateral inplane displacement while the latter has more longi-

tudinal inplane displacement. Fig. 6c shows a high_ mode

of the same type as shown in Fig. 68- The fourth nonzero

eigenvalue again has a smooth eigenfunction with My out-

of-plane displacement, shown in Fig. 6d, as expectecL Again,

in sharp contrast to results for the one-layer plate, the dis-

placement has discontinuous slopes in Figs. 6a - 6c. The

symmetry of the plate is exhibited in the symmetry of the
modes.
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Eigenfunctions for Cross-Ply Plate

Eigenfunctions for the smallest four nonzero eigenva]-

ues of the cross-ply plate are presented in Figs. 7a- 7d.

These results were obtained using 8 elements with cubic

shape functions. Figs. 7a and 7b show the eigenfunctions
for coupled transverse shear modes (with the same eigen-

values), one having more lateral inplane displacement while

the other has more longitudinal inplane displacement. The

third, fourth, and fifth nonzero eigenvalues are also the same.

The eigenfunctions corresponding to two of these eigenval-

ues are shown in _ 7c and 7d. The out-of-plane mode

is shown in Fig. 7c, having the same smooth eigenfunction

as before. Fig. 7d slmws a higher mode of the same type

as shown in Fig. To. The other eigenfunction for this triple

root (not shown) is a higher mode of the type as shown

in Fig. 78. Again, in contrast to results for the one-layer
plate, the displacement has discontinuous slopes - this time

in Figs. 7a, 7b, and 7& The lack of symmetry of the plate

is exhibited in a lack of symmetry in the inplane mode_

It should be clear that choo6ing a pr/ar/displacement

fields which exhibit the ,_xacter of the inplane modes

shown in Figa 4 - 7 would be virtuallyimpossible. They

have the appropriate symmetry or asymmetry, as wellas the

discontinuitieswhich reflectthe layup.

Concluding Remarks

A geometrically nonlinear theory for laminated plates

is presented based on a combination of the variational

asymptotical method and the method of Ritz. The dis-

placement field is described in terms of the average dis-

placement of the normal lineelement and a small number

of additional functions of the in-plane coordinates of the

plate. The through-the-thickness shape functions for these

new _degrees of f_reedom_ are not analytic functions for ar-

bitrarilylaminated plates. Rather, they are eigenfunctions

of a certain Sturm-Liouville problem based on the thickness

coordinate of the plate. Unlike power series formulations,

this allows for the correct treatment the known jumps in

the stress and strain fields. Unlike layerwise variable theo-

ries, the present theory has only a small number of variables

in addition to those found in classical plate theory, a num-

ber which does not depend on the number of layers in the

plates. Additional equilibrium equations for the plate the-

ory associated with the new degrees of freedom are simple,

linear equations - even for a large-displacement theory.

Since analytical solutions of the Sturm-Liouvilh prob-
lem are limited to one- and two-layer plates, an approximate

finite element solution was obtained. Results obtained for

these shape functions are presented for a variety of lami-

nated plate configurations. These results agree well with
available exact solutions. In the future numerical studies

will be conducted in order to determine how many and which

types of degrees of freedom produce the best all-axound plate

theory.
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Appendix

Calculation of Pseudo-Inverse Matrix

Let columns of matrix _ be the set of all e'tgenvector&

In other _rds the matrix _P satisfies the following system

of equations
= H_A

• TH_ = I

where the diagonal matrix of eigenvalues h is

0 0 0 0 --- 0 0 ..- 0

0 0 0 0 --- 0 0 --- 0

0 0 0 0 --. 0 0 ... 0

0 0 0 A, " 0 0 -.. 0

: : : : -.. : : .-. :

0 0 0 0 ... AN, 0 ... 0

0 0 0 0 --- 0 Au,+t --- 0

: : : : ... : : ". :

0 0 0 0 --- 0 0 ..- Au-a

where N is the dimension of matrix E.

Now, it is easy to check that Eq. (50) and the following

expressions are true

E = H@A@TH

_V = H-x

== _A-x_ T

whem _x_

"0 0 0 0 .-- 0 0 .-- 0

0 0 0 0 .-- 0 0 -.. 0

0 0 0 0 "'" 0 0 "'" 0

0 0 0 0 --- 0 0 --- 0

: : : : -. : :

0 0 0 0 --- 0 0 ..- 0

0 0 0 0 -.- 0 _ ..- 0

: : : : ... : : ". :
.... •

0 0 0 0 --- 0 0 .--


